Anthoptilides A–E, New Briarane Diterpenes from the Australian Sea Pen Anthoptilum cf. kukenthali

Ngoc B. Pham,[†] Mark S. Butler,[†] Peter C. Healy,[‡] and Ronald J. Quinn^{*,†}

Queensland Pharmaceutical Research Institute and School of Science, Griffith University, Brisbane, Australia 4111

Received July 30, 1999

The Australian sea pen Anthoptilum cf. kukenthali has afforded five new briarane-type diterpenes, anthoptilides A–E. Their structures were determined on the basis of their spectroscopic data. Singlecrystal X-ray determination was performed on anthoptilide A. Anthoptilides B and C inhibited the binding of $[^{3}H]$ 1,3-dipropyl-8-cyclopentylxanthine ($[^{3}H]$ DPCPX) on adenosine A₁ receptors.

Marine coelenterates of the order Pennatulacea have been proven to be rich sources of diterpenoids belonging to the skeletal class of briaranes, diterpenoid γ -lactones of a highly substituted bicyclo[8.4.0] system.¹⁻⁵ Briarane diterpenes isolated from gorgonians, and occasionally their predators, have been reported to have interesting bioactivity ranging from cytotoxic,^{6–11} anti-inflamatory,^{12–14} antiviral,^{6,14} and insecticidal¹⁵ to immunomodulatory¹⁶ activity. In our continuing search for compounds inhibiting the binding of [³H]1,3-dipropyl-8-cyclopentylxanthine ([³H]-DPCPX),¹⁷ a selective A₁ radioligand antagonist, on adenosine A1 receptors, we examined an extract of the Australian sea pen Anthoptilum cf. kukenthali Hickson 1916 (phylum Cnidaria, class Octocorallia, order Pennatulacea, family Anthoptilidae). Bioassay-guided purification afforded five new briarane diterpenes, anthoptilide A-E (1-5), which are reported in this paper. Anthoptilide D contained a benzoate moiety, which is uncommon in the briarane series.⁵ The occurrence of a tiglate group has not been reported in briaranes.

Results and Discussion

Freeze-dried Anthoptilum cf. kukenthali was extracted exhaustively with CH2Cl2. The extract was chromatographed over silica-based diol with hexane, hexanes-EtOAc, EtOAc, and MeOH. The hexanes-EtOAc fraction was rechromatographed on diol normal-phase HPLC to yield anthoptilides A-E (1-5).

Anthoptilide A (1) was isolated as white needles from MeOH. The molecular formula C₂₇H₃₄O₇, established by HRESIMS, indicated 11 degrees of unsaturation for 1. The IR spectrum of **1** showed the presence of a γ -lactone (ν_{max} 1752 cm^{-1}) and ester carbonyl groups (ν_{max} 1698 and 1685 cm⁻¹). The ¹H NMR spectrum had resonances due to three oxymethine protons at δ 5.22 (1H, d, J = 9.0 Hz), 5.08 (1H, t, J = 3.6 Hz), and 4.88 (1H, s); four quaternary methyl groups at δ 1.10, 1.90, 1.92, and 2.08; and an acetate methyl at δ 2.00. The ¹³C NMR spectrum showed four carbonyl resonances at 167.1, 169.0, 173.6, and 193.2 ppm, confirming the presence of a γ -lactone, two ester groups, and a ketone. The HMQC experiment allowed the assignment of all the protons to the corresponding carbon atoms (Table 1). The presence of a tiglate group was indicated by two methyl groups at δ 1.84 (t, J = 1.2 Hz) and 1.82 (dd, J =6.6, 1.2 Hz), and an olefinic proton at δ 6.83 (ddd, J = 6.6,

^{*} To whom correspondence should be addressed. Tel.: 617 3875 6000. Fax.: 617 3875 6001. E-mail: R.Quinn@qpri.gu.edu.au.

[‡] School of Science.

10.1021/np9903806 CCC: \$19.00

6.6, 1.2 Hz), which coupled (HMBC) to C-23 (167.1 ppm), C-24 (128.2 ppm), C-26 (14.6 ppm), and C-27 (12.3 ppm). The resonance of the olefinic proton at δ 6.83 established that this ester group was a tiglate and not the angelate.¹⁸ The main framework of **1** was found to be a briarane-type diterpene and was established by an analysis of 1D and 2D NMR data. The ¹H-¹H COSY spectrum allowed us to establish the proton sequences from H-2 to H-4 and from H-6 to H-7. The 10-membered ring was established by key HMBC correlations from H-2 to C-1, C-4, C-10; H-7 to C-5, C-6, C-8; and H-9 to C-1, C-7, C-8, C-10. The cyclohexene ring fused to the 10-membered ring at C-1 and C-10 was deduced by HMBC correlations between H-9 and C-1, C-10, C-11; H-14 and C-1, C-10, C-12, C-13, C-15. The α-methyl-

© 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 03/02/2000

Table 1. ¹H, ¹³C NMR, HMBC, and ROESY Data of Anthoptilide A (1)

position	$^{1}\mathrm{H}^{a}$	$^{13}\mathrm{C}^{b}$	HMBC ^a	ROESY ^a
1		44.3		
2	5.08 (t, 3.6)	74.5^{c}	1, 4, 10, 14, 15, 23	3α, 4α, 16, 22
3β	2.27 (m)	33.5^{c}		2, 3α , 4α , 4β , 7, 9β , 15
3α	1.87 (m)			
4β	2.65 (d, 13.2)	29.3		4α, 7
4α	2.35 (m)			$3\beta, 4\beta$
5		144.3		
6	5.22 (d, 9.0)	122.7	4, 16	3 α, 3 β, 9 α
7	5.57 (d, 9.0)	80.7	5, 6, 8, 17	3α , 4α , 4β , 6 , 9α , 9β
8		158.1		
9β	3.01 (br d, 16.8)	29.3	1, 7, 8, 10, 11, 17	3β , 7, 9 α , 15
9α	2.62 (dd, 16.8, 8.0)		7, 8, 10, 11, 17	3α , 3β , 7, 9β , 15
10	3.27 (br)	39.2		12, 20
11		161.2		
12	5.83 (t, 1.2)	123.5	10, 11, 14, 20	10, 20
13		193.2 ^d		
14	4.88 (s)	77.3	1, 2, 10, 12, 13, 15, 21	15, 25, 26
15	1.10 (s)	13.7	1, 2, 10, 14	9α , 9β , 14
16	2.08 (s)	26.9 ^c	5, 6	2, 6
17		125.6		
18	1.92 (s)	9.8	8, 17, 19	9α
19		173.6		
20	1.90 (s)	22.1	10, 11, 12	9α, 12, 14
21		169.0		
22	2.00 (s)	20.8	21	
23		167.1		
24		128.2		
25	6.83 (ddd, 6.6, 6.6, 1.2)	138.3	23, 26, 27	3β , 9β , 26, 27
26	1.82 (dd, 6.6, 1.2)	14.6	24, 25	25, 27
27	1.84 (t, 1.2)	12.3	23, 24, 25	26, 27

^{*a*} Spectra were recorded in CDCl₃ at 25 °C (600 MHz). ^{*b*} Spectrum was recorded in CDCl₃ at 25 °C (100 MHz). ^{*c*} Assignments were based on HMQC and HMBC data recorded in CDCl₃ at 25 °C (400 MHz). ^{*d*} Broad signal, assignment was based on HMBC data recorded in CDCl₃ at 25 °C (400 MHz).

 γ -lactone connected to the 10-membered ring at C-7 and C-8 was established by the HMBC correlations from H-7 to C-8 and C-17; and H-18 to C-8, C-17, and C-19. The remaining tertiary methyl groups, δ 1.10, 2.08, and 1.90, were attached to the briarane skeleton at C-1, C-5, and C-11 (HMBC), respectively. The positions of the acetate at C-14 and the tiglate at C-2 were supported by HMBC connectivities from H-14 to C-21, and H-2 to C-23, respectively. The relative stereochemistry of 1 was determined by a ROESY experiment. The ROE correlations from H-10 to H-12 and H₃-20 indicated these protons were on the same face of the six-membered ring and were assigned as the α protons, while H-14 showed ROE responses with H-2 and H₃-15, but not with H-10, confirming the β -orientation for this proton. A single-crystal X-ray structure analysis confirmed the molecular structure and relative stereochemistry of anthoptilide A as 1 (Figure 1). The absolute chemistry was not determined.

Compound 2 had a molecular formula of C₂₆H₃₄O₇ deduced from the pseudomolecular ion m/z 481.2216 [M + Na]⁺ in its HRESIMS. Its spectral data (IR, ¹H, ¹³C) indicated that the only difference between 1 and 2 was the ester group at position C-2. ¹H NMR, ¹H-¹H COSY, and HMBC data allowed the elucidation of an isobutyrate with two methyl resonances (δ 1.18, d, J = 6.0 Hz, H-25; δ 1.16, d, J = 6.0 Hz, H-26) coupled to a methine group (δ 2.56, m, H-24), which showed HMBC correlations to C-23 (176.3 ppm), C-25 (18.6 ppm), and C-26 (18.7 ppm). Key HMBC correlations between H-2 and C-1, C-4, C-15, C-23 confirmed the isobutyrate at C-2. The relative stereochemistry of anthoptilide B was assumed to be the same as that of 1 due to the similarity of proton-proton coupling constants and ¹H and ¹³C chemical shifts. Thus, anthoptilide B was assigned as 2.

Anthoptilide C (3) was isolated as white powder. Its molecular formula of $C_{25}H_{32}O_7$ was deduced from the

Figure 1. ORTEP representation of 1.

pseudomolecular ion at m/z 467.2027 [M + Na]⁺ in its HRESIMS. ¹H and ¹³C NMR again showed that **3** differed from **1** at position C-2. A propionate was deduced by the HMBC correlations between H-25 (3H, t, J = 7.2 Hz, δ 1.13) and C-23 (174.0 ppm), C-24 (27.6 ppm), and its position was confirmed by the key HMBC correlations between H-2

Table 2.	¹ H NMR	Data fo	r Anthoptilides	s B-E	(2-5))ć
----------	--------------------	---------	-----------------	-------	-------	----

position	2	3	4	5
2	4.98 (br s)	4.95 (s)	5.27 (br s)	4.78 (br s)
3β	2.53 (m)	2.25 (m)	2.36 (m)	2.16 (m)
3α	1.82 (m)	1.85 (m)	1.96 (m)	1.72 (m)
4β	2.64 (br d)	2.64 (br d)	2.72 (br d)	2.58 (br d)
4α	2.25 (m)	2.30 (m)	2.34 (m)	2.37 (m)
6	5.21 (d, 9.0)	5.20 (d, 9.2)	5.25 (br)	5.17 (br)
7	5.54 (d, 9.0)	5.53 (d, 9.2)	5.60 (d, 9.2)	5.48 (br)
9β	2.98 (d, 16.2)	2.95 (br d, 16.4)	3.06 (d, 16.2)	2.85 (br d, 16.2)
9α	2.61 (dd, 16.2, 8.4)	2.59 (dd, 16.4, 8.4)	2.67 (dd, 16.2, 8.0)	2.53 (dd, 16.2, 8.4)
10	3.20 (br s)	3.17 (br s)	3.36 (br s)	2.76 (br s)
12	5.82 (s)	5.82 (s)	5.84 (t, 1.2)	5.15 (br s)
13				5.47 (br s)
14	4.89 (s)	4.92 (s)	4.95 (s)	5.22 (br s)
15	1.06 (s)	1.04 (s)	1.20 (s)	1.14 (s)
16	2.07 (s)	2.06 (s)	2.14 (br s)	2.07 (s)
18	1.91 (s)	1.89 (s)	1.92 (s)	1.89 (s)
20	1.89 (s)	1.90 (s)	1.93 (s)	1.65 (s)
22	2.00 (s)	2.00 (s)	2.00 (s)	1.98 (s)
24	2.56 (m)	2.33 (m)		1.97 (s)
25	1.18 (d, 6.0)	1.13 (t, 7.2)	7.98 (dd, 7.2, 1.2)	
26	1.16 (d, 6.0)		7.45 (t, 7.2)	2.31 (m)
27			7.58 (dt, 7.2, 1.2)	1.11 (t, 7.2)
28			7.98 (dd, 7.2, 1.2)	
29			7.45 (t, 7.2)	

^a Spectra were recorded in CDCl₃ at 25 °C (400 MHz).

and C-23. Thus, anthoptilide C, with the same relative stereochemisty as **1**, was assigned as **3**.

Anthoptilide D (4) was isolated as white powder with the molecular formula of $C_{29}H_{32}O_7$, deduced from HRES-IMS, which indicated 14 degrees of unsaturation. ¹H and ¹³C NMR analysis revealed the briarane skeleton as in **1**, **2**, and **3**, accounting for nine degrees of unsaturation. The other five were explained by the presence of a benzoate group. The aromatic proton signals occurred at δ 7.98 (2H, dd, J = 7.2, 1.2 Hz, H-25), 7.45 (2H, t, J = 7.2 Hz, H-26), and 7.58 (2H, dt, J = 7.2, 1.2 Hz, H-27), the ¹³C signals at 165.8 (C-23), 129.5 (C-24), 129.5 (C-25), 128.6 (C-26), and 133.4 ppm (C-27), with HMBC correlations from H-25 to C-23, C-24, C-27. Positioning the benzoate at C-2 was based on an HMBC connectivity from H-2 (δ 5.27) to the carbonyl carbon (165.8 ppm, C-23). The relative stereochemistry of **4** was similar to **1**. Thus, anthoptilide D was assigned as **4**.

Anthoptilide E (5) was isolated as an amorphous solid, and a molecular formula of C27H36O8 was established by HRESIMS. It was observed that the spectral data (1H and ¹³C NMR) of **5** were similar to **3**, but differed in the absence of a ketone group at 193.3 ppm (C-13 in 3) and the presence of an oxymethine proton at δ 5.47 (br s), suggesting that the ketone group at C-13 was replaced by an ester group. The ¹³C NMR spectrum of 5 showed four carbonyl resonances at 170.6 (2C), 173.8 (1C), and 174.4 (1C) ppm, confirming the presence of a γ -lactone and three ester groups. The ¹H NMR spectrum revealed the presence of two acetate methyls at δ 1.97 and 1.98 and a propionoxyl group [δ 1.11 (3H, t, J = 7.2 Hz) and 2.31 (2H, m)]. The propionate position at C-2 was confirmed from the HMBC correlations between H-2 (δ 4.78) and C-25 (174.4 ppm). The acetates were positioned at C-13 and C-14, as confirmed by the connectivities (HMBC) between H-13 (δ 5.47) and C-21 (170.6 ppm) and between H-14 (δ 5.22) and C-23 (170.6 ppm). The ROESY experiment showed that 5 had the same relative stereochemistry as 1 at positions C-1, C-2, C-7, and C-10. H-13 had the ROE correlation with H₃-15, describing the β -orientation for this proton. Thus, the structure of anthoptilide E was assigned as 5.

Anthoptilide A-E inhibited [3H]CPDPX binding to rat-

brain adenosine A_1 receptors with IC₅₀ values of 420, 45, 3.1, 500, and 490 μ M, respectively.

Experimental Section

General Experimental Procedures. Solvents used were Omnisolv MeOH and EtOAc, while CH₂Cl₂ and hexane were distilled and filtered. The flash column (15 cm \times 3.5 cm i.d.) was packed with silica-based diol. A YMC Diol N-P column (5 μ m, 15 cm \times 4.6 mm i.d.) was used for HPLC. A Waters 600 pump equipped with a 996 PDA detector was used for analytical and semipreparative HPLC separations. NMR spectra were recorded in CDCl₃ on a Varian Inova 400 and 600 MHz NMR spectrometer with ¹H and ¹³C chemical shifts referenced to the solvent peak δ 7.26 and 77.0 ppm. HRESIMS were measured on a Bruker BioAPEX 47e mass spectrometer. Optical rotations were measured in MeOH using a JASCO P-1020 polarimeter. 2-Chloroadenosine (2-CADO) was purchased from Research Biochemical International; [³H]-1,3dipropyl-8-cyclopentylxanthine ([³H]DPCPX), from Dupont New Products; and adenosine deaminase type VI, from Sigma Chemical Co.

Animal Material. The animal was collected at the depth of 267 m from CSIRO RV *Southern Surveyor*, on the Northwest side of Port Hedland (18.16.6' S, 118.11.2' E), Western Australia. It was identified as *Anthoptilum* cf. *kukenthali* Hickson 1916 (phylum Cnidaria, class Octocorallia, order Pennatulacea, family Anthoptilidae). Voucher specimen QMG306192 has been deposited at the Queensland Museum, South Brisbane, Queensland, Australia.

Extraction and Isolation. Freeze-dried Anthoptilum cf. kukenthali (2.3 g) was extracted exhaustively with CH_2Cl_2 . After evaporation of the solvent, the crude extract (240 mg) was purified through a flash diol column with hexane, hexane $-CH_2Cl_2$ (1:1), CH_2Cl_2 , and MeOH. The active hexane $-CH_2Cl_2$ (1:1) fraction was then chromatographed further on diol semipreparative HPLC, eluted at 3 mL/min isocratically with hexane-2-propanol (9:1) to give anthoptilides A (13.0 mg, 0.56% dry wt, 18 min), B (13.6 mg, 0.59% dry wt, 16 min), C (10.0 mg, 0.43% dry wt, 19 min), D (8.5 mg, 0.37% dry wt, 21 min), and E (4.0 mg, 0.17% dry wt, 8 min).

Single-Crystal X-ray Crystallography of 1.¹⁹ Suitable colorless, platelike crystals of **1** were obtained by recrystallization from methanol. The crystal ($0.50 \times 0.05 \times 0.15$ mm) belongs to the orthorhombic space group *P*2₁2₁2₁ with *a* = 9.938(7) Å, *b* = 28.834(7) Å, *c* = 8.999(6) Å, *V* = 2579 Å³, *Z* =

Table 3. ¹³C NMR Data for Anthoptilides B-E (2-5)^a

position	2	3	4	5
1	44.0	44.1	44.4	42.6
2	72.4^{b}	72.4^{b}	74.4^{b}	73.6
3	34.0	33.3^{b}	33.0^{b}	33.7
4	29.3	29.4	29.3	29.5
5	144.3^{c}	144.4	144.1	143.8
6	122.6	122.6	122.8	122.8
7	80.6	80.7	80.7	80.8
8	158.0	158.0	158.0	159.1
9	29.3	29.4	29.3	29.6
10	39.2	39.3	39.3	37.8
11	161.1	161.3	161.0	139.3
12	123.4	123.7	123.5	118.3
13	193.3 ^c	193.3 ^c	193.3 ^c	67.8
14	76.6^{b}	76.2	77.2	72.1
15	13.1^{b}	13.1^{b}	14.1^{b}	14.8
16	27.8^{b}	27.6^{b}	27.4^{b}	27.7
17	124.7	125.6	125.7	125.1
18	9.8	9.8	9.8	9.7
19	173.5	173.5	173.5	173.8
20	20.7	20.8	22.1	20.9
21	169.0	169.2	169.0	170.6
22	20.8	20.8	20.7	21.2
23	176.3^{c}	174.0	165.8	170.6
24	34.2	27.6	129.5	21.1
25	18.6	8.8	129.5	174.4
26	18.7		128.6	27.6
27			133.4	8.8
28			129.5	
29			128.6	

^a Spectra were recorded in CDCl₃ at 25 °C (100 MHz). ^b Assignments were based on HMQC and HMBC data recorded in CDCl₃ at 25 °C (400 MHz). ^c Assignments were based on HMBC data recorded in CDCl₃ at 25 °C (400 MHz).

4, $D_{\text{calc}} = 1.212$ g cm⁻³. Intensity data were measured on a Rigaku AFC7R diffractometer with graphite monochromated Mo K α radiation with $\lambda = 0.710$ 69 Å to $2\theta_{max} = 50^{\circ}$ yielding 2636 unique reflections, 870 with $I > 2\sigma(I)$ being considered observed. The structure was solved by direct methods and refined by a full-matrix least-squares procedure (program TeXsan, 1992).²⁰ The non-hydrogen atoms were refined anisotropically; $(x, y, z, U_{iso})_H$ were included and constrained at estimated values. Weights derivative of $w = 1/[\sigma^2(F)]$ were employed. The refinement converged to a final R = 0.059, R_w 0.051 for 308 variable parameters.

Receptor Binding Assays. Binding of 1–5 to A₁ receptors from rat-brain membranes were performed as described previously.²¹ Data were analyzed using a nonlinear, least-squares regression program (Prism 2.0) to determine IC₅₀ values.

Anthoptilide A (1): white solid; $[\alpha]^{25}_{D}$ +92.6° (c 0.63 in MeOH); UV (MeOH) λ_{max} (ϵ) 216 (20 200), 241 nm (11 020); IR (film) 1751, 1690, 1685, 1257, 1220 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; (+)-HRESIMS m/z 493.2218 (calcd for M + Na, C27H34O7Na 493.2197).

Anthoptilide B (2): white solid, $[\alpha]^{25}_{D}$ +59.1° (*c* 0.52 in MeOH); UV (MeOH) λ_{max} (ϵ) 216 (18 930), 241 nm (15 370); IR (film) 1752 (br), 1692, 1223 cm⁻¹; ¹H NMR data, see Table 2, ¹³C NMR data, see Table 3; (+)-HRESIMS m/z 481.2216 (calcd for M + Na, $C_{26}H_{34}O_7Na$ 481.2197).

Anthoptilide C (3): white solid, $[\alpha]^{25}_{D}$ +17.6° (*c* 0.19 in

MeOH); UV (MeOH) λ_{max} (ϵ) 213 (16 100), 241 nm (13 820); IR (film) 1749, 1717, 1698, 1684, 1653, 1558, 1541, 1507, 1222 cm⁻¹; ¹H NMR data, see Table 2, ¹³C MMR data, see Table 3; (+)-HRESIMS m/z 467.2027 (calcd for M + Na, C₂₅H₃₂O₇Na 467.2040).

Anthoptilide D (4): white powder, $[\alpha]^{25}_{D} + 104.2^{\circ}$ (*c* 0.49) in MeOH); UV (MeOH) λ_{max} (ϵ) 228 nm (7750); IR (film) 1750 (br), 1717, 1698, 1685, 1269 (br), 1221 (br) cm⁻¹; ¹H NMR data, see Table 2, ¹³C NMR data, see Table 3; (+)-HRESIMS m/z 515.2052 (calcd for M + Na, $C_{29}H_{32}O_7Na$ 515.2040).

Anthoptilide E (5): amorphous solid, $[\alpha]^{25}_{D} + 2.2^{\circ}$ (*c* 0.28) in MeOH); UV (MeOH) λ_{max} ($\hat{\epsilon}$) 202 (13 420), 218 nm (10 160); IR (film) 1746 (br), 1666, 1246 cm⁻¹; ¹H NMR data, see Table 2, ¹³C NMR data, see Table 3; (+)-HRESIMS m/z 511.2294 (calcd for M + Na, $C_{27}H_{36}O_8Na$ 511.2302).

Acknowledgment. We are indebted to Dr. John Hooper, Sessile Marine Invertebrate Section, Queensland Museum, for the collection of the animal; Dr. Phil Alderslade, Northern Territory Museum, for the animal identification; and Mr. Rick Willis, Australian Institute of Marine Science, Townsville, for the HRESIMS analyses. We thank the Australian Research Council for financial support of this research.

References and Notes

- (1) Guerriero, A.; D'Ambrosio, M.; Pietra, F. Helv. Chim. Acta 1987, 70, 984 - 991
- (2)Guerriero, A.; D'Ambrosio, M.; Pietra, F. Helv. Chim. Acta 1988, 71, 472 - 485(3) Guerriero, A.; D'Ambrosio, M.; Pietra, F. Helv. Chim. Acta 1990, 73,
- 267 283.(4) Guerriero, A.; D'Ambrosio, M.; Pietra, F. Helv. Chim. Acta 1995, 78,
- 1465 1478(5) Fu, X.; Schmitz, F. J.; Williams, G. C. J. Nat. Prod. 1999, 62, 584-586.
- (6) Coval, S. J.; Cross, S.; Bernardinelli, G.; Jefford, C. W. J. Nat. Prod. 1988, 51, 981-984
- Schmitz, F. J.; Schulz, M. M.; Siripitayananon, J.; Hossain, M. B.; Van der Helm, D. *J. Nat. Prod.* **1993**, *56*, 1339–1349.
 Bloor, S. J.; Schmitz, F. J.; Hossain, M. B.; Van der Helm, D. *J. Org.*
- Chem. 1992, 57, 1205-1216.
- Rodriguez, J.; Nieto, R. M.; Jimenez, C. J. Nat. Prod. 1998, 61, 313-(9)317.
- (10) Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M. Y. J. Nat. Prod. **1998**, 61, 602–608.
 (11) Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Lin, S.-F.; Duh, C.-Y.; Sheu, J.-H. J. Nat. Prod. **1999**, 62, 457–463.
- (12) Pordesimo, E. O.; Schmitz, F. J.; Ciereszko, L. S.; Hossain, M. B.;
- (12) Fordestandi, E. G., Schmidt, N. J., Van der Helm, D. J. Org. Chem. 1991, 56, 2344–2357.
 (13) Kobaysashi, J.; Cheng, J.-F.; Nakamura, H.; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Grace, K. J. S.; Jacobs, R. S.; Kato, Y.; Brinen, L. S.; Clardy, J. Experientia 1991, 47, 501–502.
- (14) Shin, J.; Park, M.; Fenical, W. Tetrahedron 1989, 45, 1633-1638. (15) Grode, S. H.; James, T. R.; Cardellina, J. H., II. J. Org. Chem. 1983,
- (13) Groue, S. H., Santes, T. R., Cardennia, S. H., H. J. Olg. Chem. 1963, 48, 5203-5207.
 (16) Hamann, M. T.; Harrison, K. N.; Carroll, A. R.; Scheuer, P. J. *Heterocycles* 1996, 42, 325-331.
 (17) Linden, J. FASEB J. 1991, 5, 2668-2676.
- (18) Biemann, K. In Tables of Spectral Data for Structure Determination of Organic Compounds; Fresenius, W., Huber, J. F. K., Pungor, E., Rechnitz, G. A., Simon, W., West, Th. S., Eds.; Springer-Verlag: Berlin, 1989; pp H215-H220.
- (19) Atomic coordinates for this structure has been deposited with the Cambridge Crystallographic Data Centre.
- (20) TeXsan: Crystal Structure Analysis Package, Molecular Structure (20) Fersain Corporation, 1992.
 (21) Pham, N. B.; Butler, M. S.; Hooper, J. N. A.; Moni, R. W.; Quinn, R.
- J. J. Nat. Prod. 1999, 62, 1439-1442.

NP9903806